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When computing numerical solutions to partial differential equations, difference operators that mimic the crucial
properties of the differential operators are uspally more accurate than those that do not, Properties such as symmetry,
conservation, stability, and the duality relationships and identities between the gradient, curl, and divergence operators
are all important. Using the finite volume method, we have derived local, accurate, reliable and efficient difference
methods that mimic these properties on nonuniform rectangular and cuboid grids. In a finite volume method, the
divergence, gradient, and curl operators are defined using a discrete versions of the divergence theorem and Stokes'
theorem, These methods are especially powerful on coarse nonuniform grids and in calcnlations where the mesh
moves to track interfaces or shocks, Numerical examples comparing local second and fourth-order finite volume
approximations to conservation laws on very rough grids are used to demonstrate the advantages of the higher order
methods.

1. Introduction

When computing numerical solutions to partial differential equations (PDEs), difference operators
that mimic the crucial properties of the differential operators are usually more accurate than those
that do not. Propertics such as symmetry, conservation, stability, and the duality relationships and
identities between the gradient, curl, and divergence are all important. In this paper we will concentrate
on local, accurate, reliable and efficient difference methods that mimic these properties. These mimetic
difference schemes will be derived using the finite volume method.

In this paper we distinguish difference schemes by the methodology used to derive them. In finite
difference methods (FDM) [9], the discrete approximations to differential operators are derived by
interpolating (e.g., Lagrange or least-squares polynomial, splines, trigonometric function) pointwise
values of a function defined on a discrete mesh and differentiating the interpolant to obtain approx-
imations of the derivatives. In most of the FDMs, the derivative approximations are explicit linear
combinations of the neighboring function values.

In a finite element method (FEM) [13] the function defined on the mesh is assumed to satisfy
the variational form of some differential equation, The solution to this equation is approximated by
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restricting both the function and its variations to lie in the linear span of a finite number of basis
functions. Galerkin’s method generalizes the FEM to nonvariational settings. Approximations of a
differential operator can be extracted analytically by differentiating the basis functions.

In a finite volume method (FYM) [16] the average values of a function over local mesh cells are
taken as the unknowns. Discrete approximations of the divergence, gradient, and curl operators are
defined using general forms of Stokes’ Theorem; and the scalar Laplacian is computed as the divergence
of the gradient.

The resulting formulas for these three methods are very often identical on uniform grids but can
differ greatly in irregular grids. The FDMs are usually local (in the sense that they are explicit linear
combinations of the nearby function values) and accurate but, on irregular grids, they may lose the
stability and symmetry properties of the differential operator they are approximating. The FEMs are
nonlocal, accurate and preserve these properties even on irregular grids. The FEMs can be “lumped”
[13] to give formulas that are local, but the derivative approximations given by the local lumped
formulas are often inaccurate. The FYMs are local, accurate and preserve the stability and symmetry
properties of the differential operators. One of the goals of this paper is to define a methodology to
derive high order accurate FVMs on irregular grids.

FDM:s are commonly available to accurately approximate differential operators on uniform grids [1-
4,9]. In particular, approximations to the divergence and gradient operators are available to arbitrary
order by locally interpolating the function values with a Lagrange interpolating polynomial. Most of
the discrete approximations on uniform grids mimic the stability and symmetries of the differential
operators; this is rarely the case on nonuniform grids. These discrepancies can often be overcome
by using a nonlocal difference formulation such as the FEM. Unfortunately, this requires solving a
large algebraic system of equations to obtain accurate derivative approximations. Also, the entire
grid configuration needed to apply a nonlocal method may not always be available at each stage of
a calculation. This is often the case in methods based on domain decomposition or when solving
problems on parallel computers with distributed memory.

Because the FVM uses Stokes’ theorem to obtain its formulas approximating the dlfferenual opera-
tors, they automatically satisfy a discrete Stokes’ theorem, For definiteness, consider three dimensions,
for which we introduce the identifications: for point and cell volume quantities w is a scalar and in
the former case, dw = Vw. For line segment and cell face quantities, w 15 a vectorand dw = Vx w
[10]. The approach may be used for any differential operation corresponding to the exterior deriva-
tive. For example, in three dimensions, the exterior derivatives correspond to divergence, gradient
and curl. Stokes’ theorem f, dw = [, w is the defining relation for these operations.

We shall be applying the FVMs to approximate partial differential equations (PDEs) in their locally
integrated form. That is, the spatial domain of interest will have been cut up into a set of non-
overlapping finite volume cells, and we shall be approximately solving for the local integral of the
solution over each of these cells. The solution of the PDE satisfies certain relationships between the
change in its average value over a cell and boundary integrals around the cell. These relationships
hold not only for each cell but also for the union of cells. They also hold for the FVM solution’s local
integrals because of the underlying integral equation and because the local boundary integrals of the
solution are defined consistently and (except for sign) independently of the side of the boundary one is
considering (the sign alters in a fashion consistent with the side of the boundary under consideration. ).
Hence, when using the FVM, the analogs of appropriate integral identities are satisfied over unions of
cells automatically because of a telescoping cancelation that occurs when the local boundary integral
terms are summed to calculate the total contributions over the union of cells. Thus, for FVMs, the



114 J.M. Hyman et al. / Approximations of differential operators on nonuniform grids

corresponding analogs of integral identities hold for arbitrary unions of the cells, independent of how
accurate or inaccurate the approximation is.
~ Insection 2, we rewrite the divergence theorem and (the usual) Stokes’ theorem as relations between
the mean value of quantities over local volumes, faces, edges (whatever seems most appropriate) in
such a way that the integrals over the unions of local regions would be written as the sum of the
integrals over local regions (with the requirement that shared boundaries between cells have oppositely
directed boundary integrals when considering the two adjacent cells). Thus, in this section we construct
mnemonics that will be used to keep track of quantities whose further definition, we shall insist, must
be handled consistently, from spatial cell to cell, in order to insure appropriate cancellation upon
taking unions of cells.

Sections 3 and 4 describe additional relations to improve the accuracy of FVMs. In selecting the
unknown quanities to use with the F¥M, we have chosen the mean-value of the solution over a cell
to be the primary unknown, We make this choice because it is the integral over spatial regions that
is “conserved” in conservation laws, and because this is the item of prime importance in FVMs.
Moreover, so that we have a minimal number of unknowns, we shall use nothing else but these cell
mean-values as our independent variables. But as our local integral relationships from the PDE relate
local volume integrals to local boundary integrals, we must express the boundary integrals (over faces,
edges, and even point value of functions) in terms of the cell mean-values associated with nearby cells.
As we shall see, the more neighboring mean-values used to relate the cell mean-values and the boundary
integrals, the more accurate the FVM can be made. Indeed, the methods end up looking very like the
higher order FDMs. But, unlike FDMs on nonuniform grids, the analogs of certain integral identities
will automatically hold, because all will be done consistent with methodology derived in section 2 to
insure consistency between the cell-face, cell-edge, and local point values of the approximate solution.

After the general overview of the FVM for one and two dimensional operators, we derive local FVM
approximations for operators defined on irregular one- and two-dimensional logically rectangular grids
and show, by numerical examples, the advantage of the higher order methods. In appendix A, we show
that the recommended FVM approximation of the Laplacian is positive definite on tensor products
of uniform grids (Ax not necessarily equal to Ay). .

We had hoped to obtain nine point FVM formulas on logically rectangular grids that are exact for
quadratic functions. However, we show in appendix B that, for a reasonably large class of distorted
grids, the coefficients of the difference formulas for the gradient can become unbounded if we force
the approximation to be exact for arbitrary quadratic functions. Because of the close relationship
between the gradient and the Laplacian, this result suggests that there may not exist a stable nine point,
symmetric, positive definite, approximation to the Laplacian that is exact for quadratic scalar functions
on all logically rectangular grids. For tensor product grids we do provide an accurate, symmetric nine
point approximation to the Laplacian that is exact for quadratic functions.

2. Finite volume method

Many physically motivated systems of PDEs are derived from a limiting process applied to integral
equations. For example, a quantity « is conserved under the flow of a conservation law if the amount
of u contained in any fixed volume £ is due entirely to the flux f (1) across the boundary 82 of Q.
These conservation laws can be expressed in integral form as



J.M. Hyman et al. / Approximations of differential operators on nonuniform grids 115

n/u:/f(u}-’n‘, 2.1)

a6

&l e

where & denotes the outward normal to the boundary.
Moving the time derivative under the integral sign and applying the divergence theorem, eq. (2.1)
- can be rewritten as

/[a,u +V-f(@)] =0. 2.2)
2

By letting the volume shrink to a point, we obtain the PDE
Ju+V-f=0 (2.3)

at every point where # and f are differentiable,

When numerically solving eq. (2.1) it is natural to stop the limiting process at the local mesh spacing
and solve (2.2) where the control volumes 2 are the local mesh cells.

More precisely, in a small time-invariant, three-dimensional control volume, we write the mtegral

relation (2.2) as (9 /8t)u +V- f = 0. Here the number of bars denote the number of dimensions
averaged over (for example, * represents a three dimensional cell average}, and the divergence theorem

is applied in computing V - f by acting on face-averaged normal components of fluxes:
i 1 ~ 1 =
2 89

Here the time independent control volume £2 is bordered by the mesh points, its boundary is the union
of J distinct pieces, 62 = U(8R2);, j = 1,...,J. Moreover, here 4; ; is the area of the jth piece, and

f ; may be interpreted as the normal component of f over the jth piece given by

-+ / f-&. (2.5)

J
eR);

4
-,

The central idea behind the FVM is to accurately approximate 7}- and use (2.4} to define a discrete

approximation of V - f.

The discrete curl of a vector field v is defined using Stokes’ theorem. Instead of a cell volume
quantity, this vector lives on two-dimensional cells S and can be defined by the following operator
acting on edge-averaged tangential components of vectors:

N =t foedr= L S5,
X 0= ms/va A= Area(S)aév dr = Area(S)?l"v” (2.6)

<

where 8§ has boundary components 8S = (85);, and 7; = (1/I;) f(as) v - dr is the integral of the
tangential components of » over the jth piece of the boundary with length I;
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Similarly, the discrete gradient of a function is a line segment quantity: if £ is a line segment, the
discrete gradient operator acts on point values at the end of the segment. That is,
1

R U _ ]
vfi= length (¢) _![Vf dr = fength (g)f o~ Tength @) [f(d) - fla)], 2.7

is the discrete gradient. For arbitrary data, there exist a smooth function interpolating it (i.e. taking
on its apppropriate point values, averaged tangential components, etc.). Hence, the discrete forms of
the vector calculus identities V-V x ¢ = 0 and V x V¢ = 0 follow using appropriately weighted
sums, when the grid used is a simplicial complex [10].

The FVM can also be applied in time to give

LTS

/(a,u+v-f) -0, (2.8)
i f2
ar
lu-'-l 1 IrJH-I
Sn+l _ T T . 7 _ T A
Wt =T+ [ V- =T +—VOI(Q)§:/A,1}. (2.9)
ty in

The fluxes f; can be approximated directly by incorporating past time levels in standard linear
multistep methods or, for hyperbolic equations, by locally solving Riemann problems to estimate the
flux across the cell edges [7]. Both these methods conserve the integral of # between time steps even
when A; is nonuniform and time dependent because the structure of (2.9) and consistancy of the
difference approximations insure that the solution method is the analog of an integral over the space-
time boundary that lies between the spatial grid points and the time levels ¢, and ¢, | .

In the next two sections we give some specific examples of FYM approximations in one and two
space dimensions.

3. One space dimension

Given a mesh -« Xy < X; < X;;1 < ---, in one space dimension we define

Xisl 1 Xi41
diyy2'= ” /“(Slds, finipp:= Axoin ff(u(s'),S)ds. (3.1a,b)
+ Xi Xi

where the notation f means the averaged quantity f (u(x), x), A is the difference operator Ax; 412 =
Xiy1—Xi. Define X172 := (Xip1 + X;)/2. The averaged quantity %, is a second order approxima-
tion to the pointwise value u; .12 1= u{X;;12). To take the derivative of such averaged quantities,
we must first extend them from a discrete function to a differentiable one. That is, the average values
in (3.1b) must be interpolated to define a smooth function f (x), where f (X;+1/2) = f;41- This
can be done by defining smooth monotone functions a{x) and b(x) (e.g., piecewise cubic Hermite
polynomials with breaks at the mid-mesh points) such that for all i
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b{x)

_ 1 '
7o = s | S (wis).s) ds, (3.2)
aix)
where
alxizi2) = xi, blxigy2) = X1, @ Xipyp2) = 8 Xigp2) = 1. (3.3)

For example, on an equaily spaced grid we could use a{x) = x — %Ax, b(x) = x + %Ax On
unequally spaced grids the monotonicity preserving cubic Hermite interpolants [6] are an excellent
choice. Note that the monotonicity of {x;}, a and b guarantees that b — a is positive.

If f is continuous, then f is differentiable and

8.7 (x) = LBEELOENF (x) - f(wa(x),a(x) @ (x) _ ¥x) ~a'(x)
x o) —alx) [B(x) —a(x))?

b(x)

x /f(u(s),s)ds. (3.4)

aix}

Thus, at the mid-mesh points,

Afip

Ocfinip = B (3.5)

where f; = f (u;,x;) and u; = u(x;) are the values of the functions evaluated at the mesh points,

At the cell edges, the point values of f in eq. (3.5) would be obtained by evaluating f at the point
values of u at the cell edges. In the FVM, these values are obtained by differentiating the cumulative
integral of u,

Ux) =fu(s)ds. (3.6)
Xg
That is,
u(x) = 8, U(x). (3.7)

At the grid points U; is known exactly in terms of the #;./3;

* i—1
U = /u(S)dS = ZAXj+1;2 Ej.,.];z, (3.8)
Xp Jj=0 .
and
@ip12 = AUy 12/ 8412 _ (3.9)

This procedure is illustrated graphically in fig. 3.1.
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As the u; .2 are the basic FYM quanities, between the grid points, U is approximated by an
interpolant. For example, if U is approximated by a piecewise polynomial, then the reconstructed u is
also a piecewise polynomial. Typically, U is approximated by a piecewise linear [7], quadratic [14],
cubic {14,5], or a cehigher order Hermite interpolant [6,8]. The derivative of a kth degree interpolant
at x; is an O((Ax)*) FDM approximation to 8, U (x;). In our calcutations, we used the derivative of
a local kth degree polynomial interpolant of U to approximate 8, U (x;). This can be used in eq. (3.5)
to define the pointwise values f; and fi,; to give

J OxU {xi41),%i1) — f (&:U (X)), xi)

k 3.10
AXiri + O({Ax)") ( )

&S =

on smooth meshes and O ((Ax)*~!) when the mesh is not smooth. This loss of accuracy is illustrated
by the examples in section 5.

In many applications u represents density, energy, pressure, concentration or some positive quantity.
When u is positive then I/ must be monotonically increasing, and therefore applying a monotonicity
constraint [6] on the numerical derivative approximations of 8, is appropriate. For example, ifa
cubic Hermite interpolant U is used to approximate the derivatives, then constraining 8, U to have
the same sign as the slope of the data, S;, 1,2 = AU 41/2/AXi41/2 (= Hig12), and to satisfy

0 < u; = |6, U1| < 3min(|8,15), S5-1/2]) (3.11)

guarantees that the resulting interpolant preserves the monotonicity properties of the data points [6].
In some applications « is known to be monotone, consequently U is convex and a convexity con-
straint [6] such as

min(S; 412, Si—172) € 8 Ui < max(Si;1/2,Si—12) . (3.12)

is more appropriate.

Next, given u;, the function values f (u;, x;) are evaluated, and the 8, f are defined by (3.5). Note
that applying nonlinear constraints on the derivatives of U, such as (3.11) or (3.12), does not affect
the final conservative divergence form of the derivative approximations (3.5) of f. This would not be
the case if first 8 f were approximated and then the constraints (3.11) or {3.12) are applied directly
to 8xf (so that the flux f; out of the ith cell is different than the corresponding f; into the (i + 1)st
cell) as is sometimes done in FDMs,

4 //‘ Hw
U 2%
Biviz
-+ o
U
—r— /,ll’
/ vl 1
":)’,, Fig. 3.1. The function ¥ {solid curve) and its cumulative
Y S integral U/ (dashed curve). The values of the cell averages
P . of u are marked with x’s and the point values by a ¢. The

X2 Xy x; Xivt Xjyz Xiny Xivg exact value of U/ is known at each point marked with a o.
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The FVM can also be applied to PDEs with lower order nonlinear terms such as occur in chemically
reacting flows:

Ot + Ox f (u) = g(u). (3.13)

Here g (¢) may not be well approximated by g (%) at the mid-mesh points, and this term must also
be carefully treated as described in fig. 3.2, It is especially important to treat this term properly when
approximating the divergence to fourth (or higher) order, or the overall accuracy of the FVYM will be
reduced. That is, the high order FVMs require all the terms to be treated consistently. The resulting
high order method will require far fewer mesh points in sharp fronts, such as combustion fronts, than
a method where the nonlinear terms are not approximated properly. In numerical experiments, we
found that the FVM was significantly less accurate when the g (%) approximation was used.

For higher derivatives of , the appropriate derivatives of the interpolant of U are used. For example,
for second derivatives,

Bxhiyy — Oxtly _ 02Uiyy — 82 U:

82u, (= = 3.14
x¥ig1f2 A-xs'+lf2 Axt+l;‘2 ( )

A simple approximation to the first derivative for use in eq. (3.14) is
Ot = 2(Hiy 172 — Wimap2)/ (AXipry2 + Ax_ 1 2) + O{Ax). (3.15)

On uniform grids the FVM operators simplify to the formulas in table 1. A drawback in mapping di-
rectly from {#;,,/2} to {u;} via these formulas is the lack of a shape preserving constraint step. How-
ever, when the solution is well resolved then the shape preserving constraints are usually unnecessary
and these formulas are more convenient to use than the two step process. When f is linear, the result-
ing formulas are equivalent to the standard finite difference formulas in table 2. These are also the
~ same formulas used to derive table 1 by differentiating the cumulative integral of u.

For nonuniform grids, similar direct formulas can be derived for the FVYM. For example, a second-
order approximation to «; based on the derivative of a three point quadratic interpolant of U; is given
by the symmetric formula

ui = (AXi_12 Tig1p2 + Axip12Tic2)/ (AXig12 + AXiy2) + O((Ax)?) (3.16a)

or (similarly) by the one-sided formula

U EAI;—»M“}&HZ
Fig. 3.2. Steps to derive 2 FVM for eq. {3.13): (1)

' The cumulative integral U; is defined at the boundaries

of the FV cells. (2} An interpolant of U is constructed

——-fg and differentiated to define u;. (3) The functions f;,

Bira g _are evaluated. (4) The divergence term is evaluated

\ 8xfi+lf2 = Af;‘_'_”z;"Axi_'_”z. (5) The lower order term £

T

= is interpolated and integrated to form G(x) = {*g. (6)
ax 'f“"”z_ (f“'f_f'- ¥ %12 The average valucs ?f+lf2 = AG;, ”1/Ax,'+1p_ are defined.
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Table 1
Finite volume method formulas for equally spaced grids, ca* (Bx)"u,' = Z: Qi 128 (xi s 172)

Point value 4,52 @32 @12 G2 Giedz Gias2 G2 Qa2 Gis112 @13z Accuracy

2u{x;) 1 1 O(h?)
2u{x;) 4 -3 i O(Aa?)
12u(x;) -1 7 7 -1 oY)
12u(x;) 2 17 -1 5 -1 oY)
12u(x;) 27 =31 25 -11 2 Oht)
60u(x;) 1 -8 37 37 -8 1 Oh%)
60u(x;) -1 16 72 —43 22 -7 1 O (h5)
60u(x;) 9 93 —78 57 -28 8 ~1 Oh5)
601 (x;) 156 —267 372 —343 197 —64 9 O(hS)
bty (%) -1 1 Oht)
iy (%) -3 6 —4 1 o)
12Aux (x;) 1 -15 15 -1 O(h*)
12kt (x;) -9 0 15 -15 6 -1 oY)
12htx(x;) —44 104 —-95 41 -5 -1 Oh*)
180kuy (x;) =2 25 =245 245 =25 2 O (h5)
180hux (x;) 11 -203 175 45 -40 14 -2 Oh%)
180hAux(x;) —126 -56 430 -425 245 -79 11 o)
180hu, (x;) -938 3076 —4835 4655 -—2725 393 -126 OH%)
2h2uex (x;) 1 ~1 -1 1 O(hY)
2h2upy (x) 4 -1 11 -5 1 o)
2hlugr (X)) 9 -29 35 -19 4 O h?)
24k uxy (x;) -3 21 —18  -—18 21 -3 Oty
28k e (x;) 45 ~123 126 ~66 21 -3 oY)
24h3uxy (x;) 192 —319 1509 —1554 942 315 45 O(h%)
SR ttxxx (Xi) -5 15 -15 5 O(k?)
53U xxx (x;) -15 60 -95 75 -30 5 O(h%)
Sh3 s (x;) —-30 130 =225 195 -85 15 Oh?)

wj = [(2AXi4172 + AXip32 ) iip 172 — AXipiyz Tigs2 1/ {Bxi4 172 + AXig3pn) + O((Ax)2).
(3.16b)

Higher order formulas can be generated by using higher degree interpolants. In the examples in section
7 we also used five pqint local polynomial quartic interpolants.



J.M. Hyman et al. / Approximations of differential operators on nonuniform grids 2
Table 2
Finite difference method formulas for equally spaced grids: ch* (8x)%u; = 3 a;U (x;).
Derivative -3 42 @y & iyl @42 @it3  fGip4 Giys  @ieg  Accuracy
2hU{x;) -1 1 Oh?)
2hUx(x;) -3 4 -1 O(#?)
12RUx (x;) 1 -8 8 -1 Oh*)
128U (x;) -3 -—10 18 -6 1 o)
12805 {x;) —~25 43 -36 16 -3 Oh*)
60R U (x;) -1 9 —45 45 -9 1 O(h%)
60h T (x;) 2 24 35 30 -30 .8 -1 O(#%)
60hUx {x;) =10 ~-17 150 —100 50 —15 2 O (k%)
60hUx (x;) —147 360 —450 400 225 72 -10 O{h%)
h2Uxx (x;) 1 -2 1 O(h?)
2Ucx (x;) 2 -5 4 -1 OHA2)
12A2Uxx (x;) -1 16 -30 16 -1 Oh*)
12R2Uxx (x;) 10 —15 -4 14 -6 1 o)
12R20x (x;) 35 -104 114 —56 11 Oh)
180A2Ux (x;) 2 =27 270 —490Q 270 =27 2 O(hS)
180A2Us; (x;) -13 228 —-4X) 200 15 -12 2 Oh%)
180A2 Usx (x;) 137  —147 —255 470 —285 93 -13 Chs)
180A2Uxx (x;) 312 3132 5265 -5080 2970 -972 137 O h%)
283 Uxx (x;) -1 2 -2 1 O{A2)
283U eex (x5) -5 18 —-24 14 -3 O(h?)
I Uz (x;) 1 -4 6 -4 1 O(h?)
A Uyxxx (x1) 2 -9 I6 —14 6 -1 Oh2)
B Uexxx (X3) 3 —14 26 ~24 11 -2 Oh?)
Yz
yeyrz, o
Yt '
l(]I-I-I."l. 1]
Wypun ™| M My,
1, Y, oz
4
O, Fig. 4.1. The boundaries of QI+1{2,J+1,-"2 are given by the
grid lines. U (x, ) is known exactly where the grid lines in-
YH tersect. The boundaries of the oell, 69,-,,_1‘_,-_'_”1, 3ﬂj+ 1/2.4»
X X X Xia 3ﬂj+ 12,541+ and 3‘03,.“'”2 lie on the grid lines.

4, Two space dimensions

4.1. Orthogonal grids

The one-dimensional formulas generalize easily to FVYMs on tensor product {(x;,y;) grids, such as
the one shown in fig. 4.1. The average values within the mesh cells are
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1 Xigl FYie1 {
u(Xig172,Viv172) 1= APV / dr / ds u(r,s) = —Ai+1f2,j+lfz / u. (4.1)
X Yi Bivyzjrip

Here ;1274172 is the rectangle with corners (x;,y;), (X, ¥j41), (Xi1,¥;) and (x;41,p;4) with
area A;1,5+1/2 = AX;4128y54172- The function is extended to the region between the grid points
by defining monotone functions 4, &, ¢(y) and d (y) that satisfy (3.2) and

cWir2) = Vi A1) =Y, W) =d'ap) =1, (4.2)
and
, bx)  d(y)
9 = eI =0 | ¢ ] e @9

aix) c(y)

Proceeding as in the 1D case, we define

X y
Ulx,y) =/dr /dsu(r,s) {4.4)
X h
and
i1 j1
Ulxi,y;) i= Uy = ZZAka;szH1;2uk+1;2,¢+1,12- (4.5}
k=14=1

U and its partial derivatives can be obtained by the 1D local polynomial interpolation techniques in
table 2, applied separately in the x and y direction.

Divergence
The FVM approximation of the divergence is calculated using (2.4} to give

i ~
Vefiipiig = ——— / [ ®
i+1/2,j+1/2 Aic124172
8Ly 1254112
_ Jisnie128iv12 = Sije1pBiv12 + i iz = figipAXivn

(4.6
AX; 412854112 )

where # is the unit outward normal to the boundary and T,; j+1/2 Can be interperted as the mean value
of f - & over the boundary 842, ;, ;> as shown in fig. 4.1. The other terms are defined in a similar
fashion.

The boundary integral can be approximated on each of the four edges by first approximating average
values for u at the edges of the cells. For example, a second-order approximation, similar to (3.16a),
for the average of « over the edge of ;.12 ;1,2 between the points (x;,y;) and (x4, p;) is



J.M. Hyman et ai. / Approximations of differential operators on nonuniform grids 123

Xig1

AVi 1l ; AVt . |
fdru(r,y,-)m Vim1j2%i+1/2 4172 + BYj41/2¥iv1/2j-1/2 _ (4.7)

Ayi_12 + AVjsip

i = R

Using these, the pointwise values of u at the cell corners are, to second order, given by the following
extension of (3.16a):

Axi 18125 + A8,
Axi 12 + AXip1)2

8 (AXi1 AV 1 2Biv 12,4172 + AXio128V) 412 0ig 172,112

Ujjr=

+ AXip 128V i1 iictya iz + DX 28V et ttic 12 jo12)
x [(Axi—1/2 + Axip12) (AVj—1p2 + A1) 170 (4.8)
Next f(u) is evaluated at the pointwise values and f is integrated along each edge using the one-

dimensional quadrature formulas. If the trapezoidal rule is used, then the integration along the right
edgg is simply '

-—X —~
ij+l/2fi+l,j+l;‘2 = / f ‘N %AYJ+U2(]}11J+] + f;'il,j) (49)
8y 1 4112
and on the upper edge
Axi+l;‘2}:f+l;'2,j+l = / f-r= iAxiH;z(ﬂ-’;u_H + fl) {(4.10)
By sage1

where f* is the component of f in the x-direction and f7 is the component in the y-direction.
Alternatively, Simpson’s rule for uniform spacing

— .
Sivrjsrz ™ %(f;‘il,ju + 4 52 + fik05) (4.11)

could be used with an appropriate definition of £ ;.

The integral along the entire cell boundary gives the second order approximation for the average
value of the divergence

= X —x —y —y
Vo f =Avivin(Fivjeyz— Fijrn) + 80z — Sivy )1/
(Ax; 4128V 4172)- (4.12)

The simplest second-order approximation for the contour integral is by the trapezoidal rule. How-
ever, using Simpson’s rule, a nine point scheme can be designed so that for linear functions f (x,v) =
(1, v) the truncation error on uniform grids (# = Ax = Ay) for V- (u, v) is given by %hZAV- (u,v)
which is isotropic to fourth order. A second-order FYM with fourth-order isotropic errors preserves
the symmetry of the differential operator better than other second-order approximations. Although the
convergence rate is still second-order, nonsymmetries caused by grid orientation effects are isotropic
to fourth order. That is, orientation effects of, say, shock waves travelling at different angles with
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respect to the mesh are smaller than for other second-order approximations. Even so, our numeri-
cal examples show that the symmetric second-order methods are still much less accurate than a good
* fourth-order approximation. An advantage of {4.12) is that the simple form of the error makes de-
ferred correction approximations easy. (In a deferred correction method, first V - f is approximated,
then %A, (V} + f) is evaluated and subtracted off to give a fourth-order approximation. )

The second-order method with error isotropic to fourth order is found by finding an appropriate
interpolant to #; ;1,2 and the usual flux formulas to find u;; and ; ;,1, and then using Simpson’s
rule (4.11) for the integral along the cell boundary. The pointwise values will be approximated by

Ujje1/2 =a-1 (§i+uz,j:+3;z + Tiij2+3/2) + @12 j412 + Timiyaj41/2)

+ a1 (Fiprj2j-172 + Bir1/2,j-1/2)- (4.13)

For second order accuracy @y = 4, and @_; + 4o + @; = 1. This leaves one parameter free to adjust
the second order truncation error. If we choose @y = 3/4, a_;, = 1/8, a; = 1/8 the second order
truncation error is given by %hZAV « (u,v) as desired. For V f («,v) the normal component of the
function evaluated at the pointwise values can replace the values of ¥ and v above, though the formula
is only isotropic if the function is linear.

On a nonuniform grid it is not generally possible to derive a FVM with a leading order error term
which is isotropic. However, it is possible to choose an approximation to u; ;12 which approaches
the one described above for uniform grids as the grid approaches uniformity. For the pointwise value
Ujjr12 to be second order accurate a_; + a(I] +a; =1and g (ij_'.;;z + ij+l;‘2) —a_l(ij_H.;z +
Ay;_1;2) = 0. There is a one parameter family of solutions to these which gives (4.12) on a uniform
grid. One simple effective choice is simply to weigh the middle coefficient by the relative cell length;

do = 9 Ayii1p2 4o = (1) Ayjvis2 + AYjaap

: 4Ayi32 + Ay + Ay’ Ayivapa + 2850102 + AVj1p’
Ay; Ay;_

a4 = (1 Vi+172 + BYj-1/2

% Ayjpsp + 28y + By

U4;41,5+1/2 is found using the same coefficients. For v;,1/2,; and ¥iy12,/41 use coefficients by, k =
—1,0, 1 where & is given by the formula for g, with Ay’s replaced by the correspon ing Ax’s.

Gradient and curl

The FVM gradient is obtained by integrating along the grid edges. LetAx; 4 ; = Xiy1,; —Xij denote
the difference in the x coordinate of the gridpoints (i, j) and (i + 1, j), with a similar notation for
the vertical edges. The FVM gradient is

= Afivipaj '

V frnrjy e U2 (4.14a)
Sy AXiy1/2,;

Viijey = ey’ (4.14b)

while the FVYM curl is
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VXPir12j412:=
Txig1/2,j Diprja; + Uyivijerya BVitrjr1/2 = Txivrpa et - AXiv1ynie1 — Uyijp1y2  BVij+1/2
Ai172,54112

(4.14c)

where T is mean-value of the x-component of the vector 7.

When f is a composed function, the same manipulations as in the previous section may be performed
to determine the quadrature rules.

We point out that these discrete operators do not correspond directly to the usual differential
operators. For example, the gradient maps scalar functions on the gridpoints to scalar functions on
the edges, not vector functions. Thus, there are two types of scalar data: those that live on vertical and
horizontal edges. On nondegenerate grids the gradient components can be interpolated and combined
10 get a vector gradient. However, often it is not the full gradient vector which is needed, only the
normal or tangential component as in the foliowing section on the Laplacian operator.

This FVM technique works in any number of dimensions, and satisfies discrete analogues of the
vector identities exactly. This follows from general principles in algebraic topology: namely that the
boundary of a boundary is null, as explained in detail in [10]. Also there we show that if the Laplacian
is computed as a FVM differential operator composed with its adjoint then Hodge’s theorem applies:
namely we can compute the dimension of the kernel of the Laplacian in terms of the topology of the
underlying manifold. This corresponds to the reasoning of using a FVM gradient, and then using its
adjoint as a divergence instead of a FVM divergence,

In addition, this method can be used to compute the vector Laplacian. Unfortunately, using this
approach, the resulting Laplacian is not local, since the adjoint process does not preserve the localness
of operators.

Laplacian
The FVYM approximation of

—— )] -
V- Vaiapis f dVu .7 (4.15)

Ay 1p2 4412

can be constructed by approximating directional derivative (mean flux) at the midpoints of the cell
edges using

i tpiryz — izl O(Ax) (4.16)

dVu; jp12 Bx = d;j
J4+1/2
chld Xiv12 — Xi—1/2

and similar formulas. Here s, denotes the unit vector in the x direction and

dijei2 = 2disip g2 dioyz o2 @iz iz + diciypgere) ™ (4.17)

The harmonic average is used to insure the continuity of the flux across the cell edge when the diffusion
coefficient is discontinuous [12]. We assume the harmonic averages of the scalar diffusion coefficient



126 S M. Hyman et al. / Approximations of differential operators on nonuniform grids

= 1 7!
i = g 0) 15

iy

R,

are known. Often the integrals in (4.18) to define d are calculated numerically on a much finer mesh

than the mesh used to solve the FVM approximation. This calculation is done once to define 2 on the
coarser mesh at the beginning of the problem and then the finer mesh is eliminated.

Equation (4.16) defines a midpoint rule approximation of the mean flux through the cell boundary.
The approximations in nearby cells can be combined to give more accurate and symmetric formulas.
The directional derivatives at the cell corners are useful quantities in deriving these approximations
and can be approximated using (4.16):

Ayj_12d Vi j 12 Bx + Ayjp12d Vi j_1y2 - Ax
Ayivia + Ayj_ip2

Ax; 1pd Vi1 By + Axip12d Vg0 j - Ay
Axiy1p2 + Axi_yp2

qu,-,j . ﬁx =

1

(4.19)

qu,-,j - ﬁy =

To evaluate the mean flux f(u) = d(x)uy in terms of the volume averages %, first the volume
averages are used to approximate the pointwise values of 4 and then f ()} can be approximated in
two distinct ways: We could first interpolate u to form # along the volume boundary, Next analytically
(or numerically) evaluate f;, f (i) - n. Alternately, we could have first evaluated f () at the grid
points, then interpolated and integrated f along the volume boundary. In our numerical experiments,
the more accurate method depended on whether u or f is smoother.

When d is constant it is possible, as it was for the divergence, to find a second-order approximation
to Au which has isotropic truncation error {;42A%u on uniform grids (A = Ax = Ay). We find an
interpolant for the cell midpoint such that the integration can be done using Simpson’s rule (4.11):

Bethijy1/2 = Ay (Tig1p2,j43/2 — Bic1j2g4+32) + G0 iy 124172 — Ticijzj+1/2)
+ay (Tig 12,5172 = Ficyyzj-12)- (4.20)

For second-order accuracy a_; = 4; and a_; + ap + @; = 1. This leaves one parameter free to adjust
the second-order truncation error. For the Laplacian, the error is isotropic if we choose ag = 1,a_; =
0,a; = 0. The nine-point stencil of the resulting scheme is given by

1 4 1
Ay~ A~
4 20 4
7 A~ S~
1 4 1 '
A~ B (4.21)

As for the second-order isotropic divergence operator, one defect correction iteration can raise the
method to fourth order. We extend the method to nonuniform grids in the same fashion as for the
divergence. For the Laplacian, the restriction on the coefficients is the same and the simple weighting
method has the coefficients
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Ay + Ayja3p
Ayiiap + 28y;002 + Ayj_y2”

ag = 3Apiip
Ayiapp + Ayjn + Ayjcip’
a Ayjci2 + Ayjoip2
Ayivipn + 28yi 00 + AViaip

a_; = {1 -ap)

a1=(l—

#;41,j+1/2 1s found using the same coefficients. For v, ,2; and v;, 12,41 use coefficients by, k =
—1,0,1 where b; is given by the formula for g; with Ay’s replaced by the corresponding Ax’s. As
mentioned for the divergence this a simple but not necessarily optimal choice for the coefficients.

4.2. Nonorthogonal grids

The accuracy of the FVM depends upon being able to accurately calculate the contour integral. This
requires picking the control volume so the boundary integral can be accurately approximated with
the available data on nonorthogonal grids. If the boundary of the control volume is divided into four
segments, as shown in fig. 4.1, the data at the six points surrounding each segment can be used in
approximating its contribution to the boundary integral and the resulting difference formula will have
a nine point stencil. Six data points also uniquely define a quadratic if they do not all lie on a conic
section. If they lie near a conic section, then the quadratic is nearly degenerate and the difference
approximation is ill conditioned (see appendix B). On tensor product grids the mesh points are aligned
on two straight lines, a degenerate conic. However, there is a fortunate cancellation of the truncation
errors in the boundary integral approximations on opposite sides of the control volume and the final
FVM approximation is exact for quadratics.

In the FVM approximation of the Laplacian Vi - # must be computed along the control volume
boundary. If the six points do not lie on a conic section, Vu is known everywhere and FVM approxi-
mation 15 easily computed. If the points are on a conic section, then Vu is known only at the center
of the conic. For tensor product grids, this requires the control volume to pass through cell centers.

On more general grids, because only Vu - ¥ is needed on the cell boundary, it is conceiveable that
an approximation for Vu - # exists, which is exact for quadratics although none does for Vu (see
appendix B). : _

The development of FVYM’s on arbitrary grids which respect the vector identities will require the
tools of algebraic topology {10]. The idea is the following: The operators of Div, Grad, and Curl,
correspond to the exterior derivative d acting on differential forms. The vector identities correspond
to the fact that d o d = 0. To mimic this, we require the grid to be a triangulation of the underlying
manifold by a chain complex, transform vector and scalar quatities into forms and use integration
of the forms over cells of appropriate dimension to encode them as discrete k-cell quantities. For
example, in two dimensions, scalar functions are encoded as the evaluation of scalar functions on
the grid points(the 0-cells). Vector functions are encoded as the integral of a 1-form along a grid
edge(a 1-cell). Area cell quantities are encoded as the integral of a 2-form over a grid cell (a 2-cell).
This process is known as the DeRham map frem the DeRham complex to the cochain complex. The
discrete versions of Div, Grad, and Curl, correspond closely with the coboundary operator and are
determined by Stokes’ theorem; let w be a differential k-form, and £ a k + 1-cell, and denote by
brackets the pairing between differential forms and cells determined by integrating the form over a
cell. In this notation, the general form of Stokes’ theorem is

(dw, Q) = (©,89) (4.22)
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where 9 is the boundary operator. By assuming constancy on k + 1-cells, the FVM exterior derivative
is

(dw0, Q) _ (@,00) _ fpo®

Vol(£2) ~ vol(2) ~ vol(2) (4.23)

d&)lg =

The vector identities follow from the fact that the coboundary operator J, being the adjoint of 8, also
satisfiesdod = 0.

5. Examples
We test the FVYM on two two-dimensional evolution equations: a unidirectional wave equation
Uy = Vel(u,u) = ux + uy (5.1)
and the diffusion equation
u,. = Au = Ugx + Uyy. (5.2)

Both equations were solved with Gaussian initial data and periodic boundary conditions on a square
domain in the (x,y) plane. Tensor product grids were used with uniform, random or exponential
spacing in the two directions.

We integrated both equations with a variable time step fourth-order Adams-Bashforth-Moulton
method. The errors due to time discretization were negligible compared to errors due to spatial dis-
cretization. The cumulative integrals in the FVMs were differentiated using local quadratic, eq. (3.16),
or quartic [9] polynomial interpolation. For these linear PDEs, on uniform grids, these methods are
equivalent to the standard FDMs in table 2. We will refer to them by their order of accuracy on a
uniform grid.

5.1. Wave equation

We first test the order of accuracy of the divergence operator on random tensor product grids on the
function f (x,y) = (e**+”,e**7) by comparing the maximum error of the FVM approximation to the
known local mean values of the divergence 2e*+¥, The random grids were generated by defining the
position of the x coordinate of the j** grid point as (j + R;#) Ax . Here Ax is the average grid spacing,
R; € (—1/2,1/2) is a random sequence, and 7 < 1 is a parameter determining the relative size of the
perturbations from the uniform grid. The position of the y-coordinate is computed in a similar way.

In fig. 5.1 we plot the log of the maximum error in the local mean divergence versus the log of the
maximum mesh spacing for second- and fourth-order F¥M’s represented by open and solid symbols
respectively. Each cluster of points represents a different random sequence perturbing uniform grids
of various sizes. For each value of 5, we show a least squares linear fit of the data. The slope of this
linear fit is an approximation to the asymptotic order of accuracy of the method. For uniform grids
(n = 0 represented by the square boxes), we confirm that the methods are second- and fourth-order
accurate. As the grid becomes rougher (1 = 0.05, 0.2, and 1.0) the methods degrade by one order
because the exact cancellations which occur on uniform grids is lost. The second-order FVM reduces
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to first order on the random grid and the fourth-order FVM degenerates to third order. Also, for the
very rough (near singular) grids, the scatter in the data becomes greater and the constant in the error
term increases. That is, although the approximations on the 7 = 0.2 and 7 = 1.0 grids converge at
the same rate, the maximum errors on the rougher grid {n = 1.0) are up to five times larger.

In all our numencal experiments, the magnitude of the error for the fourth-order FVYM is much
smaller than the error for the second-order FVM on the same grid. In this example, the errors of the
fourth-order method were 0.01% of the errors of the second-order method. This has long been known
for FDM’s on uniform grids and illustrates the superiority of fourth-order methods to second-order
methods over wide ranges of resolution and grid smoothness.

Next, we solved egn. (5.1) with periodic boundary conditions on a very rough random grid (n =
0.9). Neglecting the boundary conditions, the Gaussian shape of the analytic solution, u(x,y,t) =
exp{—5[{x + D2+ (v + t)2]}, is preserved and translates at speed —1 in the x and y directions.
Because of the periodic boundary conditions, the solution at times ¢ = 0, 2,4, 6, 8, ... are identical to
the initial condition. The initial condition and the random grid are shown in fig, 5.2.

Fig. 5.3 shows the solution computed using the conservative centered FDM approximation,

i+l,; 1—1,; + iL,j+ iy . (5-3)
Xivlj —Xi-Lj  Kij+1— Xij-1

Ve(u,u)ij=~

This method does not accurately take the variation in cell volumes into account. The solution is poor
at ¢ = 2, fig. 5.3a, and ¢ven worse at ¢ = 8, fig. 5.3b. Much of the error comes from grid effects.

Fig. 5.4 shows the solution computed with the second-order FVM approximation. The integrals
along the cell boundaries are constructed using eq. (4.7). At ¢ = 2, fig. 5.4a, the solution is much
better than when computed using the FDM method. By ¢ = 8, fig. 5.4b, while the solution is slightly
less distorted than the one computed using the FDM, it is a very poor approximation of the true
solution shown in fig. 5.2.

Fig. 5.5 shows the solution at ¢t = 2 and ¢ = 8 computed using the fourth-order FVM constructed
by using the one-dimensional fourth-order flux formulas to get the cell boundary integrals (a fourth-
order analogue of eq. (4.7)). At ¢t = 2, the solution is quite accurate. Some amplitude has been lost,
but the shape and position of the peak are excellent. At ¢ = 8, the solution is still much better than
the second-order method, but some grid effects have crept in. This is seen in the change in shape and
the appearance of dips behind the peak (similar to those secen for the second-order method but much
smaller in magnitude). ,

The conlusion to be drawn from this example is that while the second-order FVM does slightly
better than the second-order FDM, the fourth-order FVM is a more accurate and has much smaller
variable grid effects.

5.2. Diffusion equations

We test the order of accuracy of the Laplacian operator on random tensor product grids for the
function f(x,y} = ¢**¥ by comparing the FVYM approximation to the known Laplacian 2¢*1”, In
fig. 5.6 we plot the log of the maximum error in the localized mean divergence versus the log of the
maximum mesh spacing for second and fourth-order FVYM’s represented by open and solid symbois
respectively. Each cluster of points in fig. 5.6 represents a different random sequence perturbing
uniform grids of vartous sizes. For each value of 5, we show a least squares linear fit of the data. The
slope of this least squares fit is an approximation to the asymptotic order of accuracy of the method.
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Fig. 5.1. Test of accuracy of the second- and fourth-order

FVM divergence on random grids with #=0.0, 0.05, 0.2,

and 1.0 using the test function (e*+”,¢**¥), For these grids,

the approximate orders (the slope of the least-squares line

. fit) for the second-order FVM are 2.00, 1.44, 0.91, and 0.87.

0.01 0.1 The corresponding convergence rates for the fourth-order
max {Ax, Ay) FVM are 4.00, 3.53, 3.01 and 3.02.
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Fig. 5.2. The initial condition # = exp[—5{x? + y?)] used with'eq. (5.1). {a) shows a contour plot of the solution and the
random grid with # = 0.9. (b) shows a surface plot of the initial condition. This is also the solution at ¢ = 2, 4, 6,....

For uniform grids ( = 0 represented by the square boxes) we confirm that the methods are second
and fourth-order accurate. As the grid becomes rougher (1 = 0.05, 0.2, and 1.0) the methods degrade-
by more than two orders. In fact, the second-order FVM is not consistent as the maximum spacing in
a random mesh is reduced to zero and the fourth-order FVM drops to only slightly better than first
order,

For the very rough (near singular) grids, the scatter in the data becomes greater and the constant
in the error term increases. That is, although the approximations on the = 0.2 and 5 = 1.0 grids
converge at the same rate, the maximum errors on the rougher grid (# = 1.0) are up to five times
larger. In all cases shown, the magnitude of the error is much smaller for the fourth-order FVM.

We computed the solution to the diffusion equation using the same initial condition as for the
wave equation. The exponentially graded grid and initial conditions are shown in fig. 5.7. The x-grid
spacing of the exponential grid is determined by partitioning the interval [0.7,1] into a sequence of
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Fig. 5.3. Contour plot of the solution of eq. (5.1) starting with the initial condition and random grid shown in fig. 5.2, The
divergence was approximated using the second-order centered FDM method (5.3). The solution is shown at time ¢ = 2 in
fig. (a) and at time t = 8 in {b)}.
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Fig. 5.4. Contour plot of the solution of eq. (5.1) starting with the initial condition and random grid shown in fig. 5.2. The
divergence was approximated using the second-order centered FVM method (4.7). The solution is shown at time ¢ = 2 in
fig. (a) and at time { = 8 in (b).

cells C; UC,...Cy, so that the left hand endpoint of C; is 0.7 and the right hand endpoint of C; is
1 and £(C;) = r£(C;_,) where £ denotes the length and r is the ratio parameter. A similar partition
is constructed to the left of x = 0.7 with the same parameter value r. Fig. 5.6 compares the solutions
computed using the second-order conservative second-order FDM for the Laplacian,
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Fig. 5.5. Contour plot of the solution of eq. (5.1) starting with the initial condition and random grid shown in fig. 5.2. The
divergence was approximated using the fourth-order centered F¥M method [9]. The solution is shown at time ¢ = 2 in fig.
(a) and at time ¢{ = 8 in (b).

Ay s ng Diw1/23/Ba1j2 = Bthiipa/BXicyjy | Akije1pa/AYjarjz = Bkijorp B2
» Xjy1/2 — Xi—1/2 Yiv1/2 = Yj-12 '
(5.4)

with the second-order FVYM (4.19).

In fig. 5.7b the considerable distortion of the circular contour lines is evident for the second-order
FDM. The contour lines in the second-order FYM solution shown in fig. 5.9¢ are much more circular.
Note that even though the second-order method is an inconsistant approximation to the Laplacian
(see fig. 5.6) the solution is still remarkably accurate. This is in agreement with the one-dimensional
results of Kreiss et al [11] who showed how, on nonuniform grids, the solutions of the difference
equation can converge at a much faster rate to the true solution than a truncation error analyis would
suggest. That is, order-of-accuracy analysis in fig. 5.6 is an upperbound on the the convergence rate
and, in fact, on nonuniform grids is often a very pessimistic bound. The fourth-order FVM, shown
in fig. 5.9d, is considerably more accurate than the second-order method, although the difference is
not discernable by eye until later in the calculation. When we compared the methods on random grids
similar to the ones used for the wave equation, the errors of the lower order methods tended to cancel
out and be much smaller than when the grids were exponentially graded.

6. Summary

In this paper we describe the finite volume method to define differential operators in terms of
integrating over finite volumes delineated by the underlying discrete grid. The divergence operator is
defined using a discrete version of Stokes’ Theorem, the gradient is defined as its dual and the curl
and Laplace operators are defined using similar identities, In numerical experiments solving wave and



J.M. Hyman et al. / Approximations of differential operators on nonuniform grids 133

+6 T . ™
= y=n jperam)
il (i 1T}
& w42 gpeaimy | S-S - 1
PR rEST M
+4 i, oLt
R O—H—c—%—r—i—g—}—‘l 3
et i - ] ) - 1
=
£ w2
W
it ’
&
g 0
3 3 .
2 4 Fig. 5.6. Test of accuracy for the second-order Laplacian
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4 ; , mate orders (the slope of the least-squares line fit) for the
0.01 0.1 0.0 second-order FVM are 2.00, —0.17, —0.15 and —0.81. The
corresponding convergence rates for the fourth-order F¥YM
max (Ax, Ay) are 4.00, 1,84, 1.83 and 1.32,

diffusion equations on nonuniform grids, we found the fourth-order FVM to be much more accurate
than the conservative second-order FDMs and second-order FYM.
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Appendix A. Stability of the Laplacian

On a uniform tensor-product grid in the x and y directions with mesh spacings Ax, Ay, and constant
mesh ratio s = Ay Ax, the trapezoidal rule FVM discretization of the Laplacian,

—D2[§] =—4K_§ = (S -+ S_l)(4§5 — U — U3 — Uy — )
+(S-S_l)(ﬁ4 +‘ﬁs-—ﬁ2—§3)

is a symmetric, conservative, nine-point, @ (#) approximation.
The matrix operator —D? is also non-negative. We verify this using local mode analysis. Let
eifx/Ax oiwy/Ay

_ . = — alfxfAx Liwy /Ay
u(x,y) = 6y P ciw_l,sot,hatu(x,y)_e ¢

and define

h(8,y) = —D?[4] = 4(s + s~ ) (1 —cosfcosy) + 2(s ~ s~ '){cos § — cos y)
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Fig. 5.7. The exponentially graded grid used for the numerical calculations of the diffusion equation (5.2) is shown in (a).
{b)-(d) show contour plots of the solution of eq. (5.2) at ¢ = 0.04 computed with starting with the initial condition and
exponentially graded grid shown in fig. 5.13. In (a), the Laplacian was approximated using the second-order FDM method
{5.4). In (c} and (d), the Laplacian was approximated using the second-order (c) and fourth-order {d) F¥YM method.

if #(9, w) is non-negative then so is ~D? (see Varga [Var]).

We will show that A is nonnegative at all of its critical points, from which it follows that A is
nonnegative everywhere.

The directional derivatives of 4 are

Ok _ 25ing [2(s + 57" cosy ~ (s —s7)],

55 A = 2siny [2(s + s~)cos @ + (s —s~')].

oh
o6
The critical points of / at which 4 takes on different values are (8, ) = (0,0), (0,#), (#,0), (n,x),

and (6., w.), where cosf. = (s —5s~1)/(2(s + 57 ') and cos g, = — (s — s~ 1)/[2(s + s~ 1)].
A straightforward calculation shows that

h(0,0) =0, AQ,r) =125 + 45~1 >0, h(n,0) =4s + 125~ !> 0, hin,m) =0,
h(8,w) =40 +57) = (s—s7) /(s + 571} > 0.
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Thus % is non-negative everywhere and the Laplacian approximation is non-negative definite.
We have not been able to prove positive definiteness for the Laplacian when the grid is a tensor
product grid with nonuniform spacing. Extensive numerical experiments indicate that it is.

Appendix B. Maximal accuracy
B.1. Discrete gradient approximations

Discrete gradient approximations (8, 8,) defined at n points in the plane, z; = (x;,¥;), i = 1, n,
are second-order accurate if for any smooth scalar function f,

_of 2 _af 2
oxf = B lo +0(h%), 8f = ax lo +O (k). (B.la,b)
For convenience, we have assumed the data has been translated 50 the gradient is evaluated at the
origin. The distance of the points z; from the origin is measured by A; for example, 2 = sup |z;|.
Expanding f in a Taylor series about the origin and defining f; = f(z;) fo = f(0,0), we have

fi=fo+ (Vo zi) + ((Jf)gzizi) + O(|zi]*) (B.2)
where
2 oS
1= aar 7 B

A linear approximation to the directional derivatives can be written as
Of =) aifi=d ai-fo+ (VS Y aiziy + Y i (D*fz;,2.), (B.42)
Of =Y Bifi= Bi-fo+ (Vie D Bizd+) BilD fz,2), (B.4b)

Necessary conditions that the approximations be exact for quadratics, which is sufficient to prove
the approximation is second order for smooth functions, is that

Yai=0 Yaxi=1 Dayi=0 Y axt=0 Y axyi=0 Y ay}=0,

(B.5)
where summation is for i between 1 and »,
These conditions can be written as the matrix system
Aa = by ' (B.6a)

where b; = (0,1,0,0,0,0)%, a = (e, 02,...0,)T, and (1, x;, y;, x?, x;3:, y?)7 is the jith column of
A
A similar equation is obtained for d, 1
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Af = by (B.6b)

- where b; = (0,0,1,0,0,0)T.

Equations (B.5a,b) are solvable if and only if b, and b, are orthogonal to every solution of the
adjoint equation, A*y = O wherey = (1, ..., 7). Thatis (y,b;}) = (y,by) = 0.

A solution to A*y = 0 satisfies

Fo(xi,¥1) = 1+ V2Xi + 73Vi + vaxt + ysxiyi + yeyi =0, i=1,---,n. (B.7)

The solutions to the equation Fy(x,y) = 0 determine a conic section in the plane. Equation (B.6)
requires that all the points (x;, ;) must lie on this conic section,

The conditions necessary to solve the adjoint equation, {y, ) = {(y,b;) = 0, are satisfied when
y2 = y3 = 0 reducing the equation to

71+ vax? + ysxy + yey? = 0. (B.8)

Geometrically this means that the origin, where the gradient is to be approximated, must be the center
of the conic section,

When all the data points lie on a conic section determined by (B.6), Fy(x,y) = 0, then an analytic
interpretation of these results is obtained by considering the function

G(x,y) = C + F,(x,y) (B.9)
with gradient
(6xG,8,G) = (y2 + sy + 27ax, 73 + ¥sx + 276¥)- (B.10)

Then because G(z;) = C fori = 1, n, and numerical gradient (D, G, D,G) = 0 is the only consistent
value obtainable for the gradient of a function whose value is C at all the data points. This result is
correct at the origin where

VG = (35,137 =0, (B.11)
requires that y; = y3 = 0 which is the solvability condition for {B.6).

Theorem 1. The gradient to a general quadratic scalar function can be computed if and only if:

(a) The points (x;, ;) do not lie on a conic section, or

(b) the points (x;,y;) lie on conic sections and the point at which the gradient is desired is at the
center of all such sections.

B.2. Two argument grids

In numerical calculations often the data points are given on a two-argument logically rectangular
grid (x,y);;. Theorem 1 imposes serious restrictions on the location of nearby grid points when
constructing a nine point approximation to the gradient that is exact for quadratics at the central mesh
point. '
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A simple example of a configuration where one cannot compute the gradient of a quadratic function
near the grid points is when the points lie on a conic section determined by two intersecting lines and
the center point P is at the intersection. This is an undesirable situation since P could easily be far
from the grid points z; if the z; are on nearly parallel lines. In particular, when n = 4, and the four
points do not form a parallelogram they lie on a conic section. When they do lie on a parallelogram
one can compute the gradient of a quadratic only at the center. When the data points lie on a parabola
there is no “center” and no nearby point where the gradient of a quadratic scalar function can be
computed exactly.

Another difficulty arises when the grid points are near a conic section. When this happens, the
coefficients in the gradient approximation may vary discontinuously as the grid points pass through
the conic section. To illustrate this, consider the grid configuration below corresponding to the six
points on one side of a nine point stencil:

(~1+4¢€,1) ° . (1 +e€,1)
(-1,0) . . (1,0) (B.12)
(_1’_1) . . (13_1)

The six grid points along one side of a nine point stencil often lie nearly along two paraliel lines.
Numbering from left to right and top to bottom the matrix A for this stencil is

1 1 1 1 1 1
1 +¢€ l+e -1 1 -1 1
1 1 0 0 -1 -1
4 (-1 +€)? (~1+€)2 0 0 1 1 (B.13)
-1+¢ -l14e 0 0 1 -1
1 1 0 0 1 1

When ¢; = 0 and €3 % 0, 4 is invertible and the unique finite difference coefficients for D, are

0 o o —% (B.14)

When ¢; = €, = 0, the matrix A is singular and any convex combination of the two sets of
coefficients is permissible.

In general, as a configuration approaches one lying on a parabola, coefficients, (a, #) become
unbounded. For, if they remained bound, a convergent subsequence could be found for (o, #) whose
limit would provide an approximation exact for quadratics, which 1s known not to exist.

On a logically rectangular grid (x;,y;), if the gradient of a function can be computed to second-
order, then the Laplacian of that function can be computed to first order by taking a contour integral
of the above gradient. This Laplacian would be symmetric, conservative, consistent with the Laplacian
to ©(h), and a nine point approximation.

Thus, the control volume boundary integrals in the FVM approximation of Laplacian of a general
quadratic scalar function can be exact (which results in a first-order approximation to the Laplacian
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of a smooth function) when the mesh points do not lie on a conic section or the points lie on conic
sections, all of which consist of only straight lines and the control volume boundary is at the midpoint
. line.

If the Laplacian is computed in this fashion and there are grid configurations for which the gradients
cannot be approximated to second-order, then it appears that this discretization of the Laplacian will
be O(1) with the possible exception of very special points.
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